Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle.

نویسندگان

  • W Barendse
  • B E Harrison
  • R J Hawken
  • D M Ferguson
  • J M Thompson
  • M B Thomas
  • R J Bunch
چکیده

The calpain gene family and its inhibitors have diverse effects, many related to protein turnover, which appear to affect a range of phenotypes such as diabetes, exercise-induced muscle injury, and pathological events associated with degenerative neural diseases in humans, fertility, longevity, and postmortem effects on meat tenderness in livestock species. The calpains are inhibited by calpastatin, which binds directly to calpain. Here we report the direct measurement of epistatic interactions of causative mutations for quantitative trait loci (QTL) at calpain 1 (CAPN1), located on chromosome 29, with causative mutations for QTL variation at calpastatin (CAST), located on chromosome 7, in cattle. First we identified potential causative mutations at CAST and then genotyped these along with putative causative mutations at CAPN1 in >1500 cattle of seven breeds. The maximum allele substitution effect on the phenotype of the CAPN1:c.947G>C single nucleotide polymorphism (SNP) was 0.14 sigma(p) (P = 0.0003) and of the CAST:c.155C>T SNP was also 0.14 sigma(p) (P = 0.0011) when measured across breeds. We found significant epistasis between SNPs at CAPN1 and CAST in both taurine and zebu derived breeds. There were more additive x dominance components of epistasis than additive x additive and dominance x dominance components combined. A minority of breed comparisons did not show epistasis, suggesting that genetic variation at other genes may influence the degree of epistasis found in this system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic diversity of myostatin and calpastatin genes in Zandi sheep

Myostatin (MSTN) is an inhibitor of skeletal muscle growth, and a mutation in the gene coding region leads to increased muscling. Calpastatin (CAST) is a specific inhibitor of the ubiquitous calcium-dependent proteases, µ-calpain and m-calpain, found in mammalian tissues. In this study, genomic DNA was extracted from Zandi sheep blood samples. Gel monitoring and spectrophotometer methods were u...

متن کامل

Cloning and characterization of the yak gene coding for calpastatin and in silico analysis of its putative product.

The calcium-activated neutral proteases, mu- and m-calpain, along with their inhibitor, calpastatin, have been demonstrated to mediate a variety of Ca(2+)-dependent processes including signal transduction, cell proliferation, cell cycle progression, differentiation, apoptosis, membrane fusion, platelet activation and skeletal muscle protein degradation. The cDNA coding for yak calpastatin was a...

متن کامل

Downregulation of the calpain inhibitor protein calpastatin by caspases during renal ischemia-reperfusion.

The interaction between the cysteine proteases calpain and caspases during renal ischemia-reperfusion (I/R) was investigated. An increase in the activity of calpain, as determined by 1) the appearance of calpain-mediated spectrin breakdown products and 2) the conversion of procalpain to active calpain, was demonstrated. Because intracellular calpain activity is regulated by calpastatin, the eff...

متن کامل

Amino-terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with calmodulin-like domain of the proteinase.

Calpastatin is a widely distributed endogenous inhibitor protein specifically acting on calpain (Ca(2+)-dependent proteinase) and is known to interact with the calmodulin-like domain (CaMLD) of the proteinase in a Ca(2+)-dependent fashion. The calpastatin molecule consists of four inhibitory domains (domains 1-4) with mutually homologous sequences in three regions designated as A, B, and C. Aci...

متن کامل

3-[2-[4-(3-Chloro-2-methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydro-chloride 3.5 hydrate (DY-9760e) is neuroprotective in rat microsphere embolism: role of the cross-talk between calpain and caspase-3 through calpastatin.

Microsphere embolism (ME)-induced cerebral ischemia can elicit various pathological events leading to neuronal death. Western blotting and immunohistochemical studies revealed that expression of calpastatin, an endogenous calpain inhibitor, decreased after ME induction. Calpain activation after ME was apparently due to, in part, a decrease in calpastatin in a late phase of neuronal injury. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 176 4  شماره 

صفحات  -

تاریخ انتشار 2007